Found 4 papers in comm-phys


Search terms: (topolog[a-z]+)|(graphit[a-z]+)|(rhombohedr[a-z]+)|(graphe[a-z]+)|(chalcog[a-z]+)|(landau)|(weyl)|(dirac)|(STM)|(scan[a-z]+ tunne[a-z]+ micr[a-z]+)|(scan[a-z]+ tunne[a-z]+ spectr[a-z]+)|(scan[a-z]+ prob[a-z]+ micr[a-z]+)|(MoS.+\d+|MoS\d+)|(MoSe.+\d+|MoSe\d+)|(MoTe.+\d+|MoTe\d+)|(WS.+\d+|WS\d+)|(WSe.+\d+|WSe\d+)|(WTe.+\d+|WTe\d+)|(Bi\d+Rh\d+I\d+|Bi.+\d+.+Rh.+\d+.+I.+\d+.+)|(BiTeI)|(BiTeBr)|(BiTeCl)|(ZrTe5|ZrTe.+5)|(Pt2HgSe3|Pt.+2HgSe.+3)|(jacuting[a-z]+)|(flatband)|(flat.{1}band)|(LK.{1}99)

Non-Hermitian reconstruction of photonic hierarchical topological states
Wei Ren

Communications Physics, Published online: 29 November 2023; doi:10.1038/s42005-023-01468-7

Higher-order topological phase appears as a pioneering topic, and together with the non-Hermiticity, brings broad attentions recently. The authors explore the interplay between the non-Hermiticity and hierarchical topological states in a non-reciprocal framework and show the flexible reconstruction of non-Hermitian higher-order topological states.

Large anomalous Hall effect and negative magnetoresistance in half-topological semimetals
Zhiqiang Mao

Communications Physics, Published online: 29 November 2023; doi:10.1038/s42005-023-01469-6

The emergence of large intrinsic anomalous Hall effect (AHE) is tied to the Berry curvature in magnetic topological semimetals, but other alternatives to achieve AHE are still desirable. The authors show that a half-topological semimetal state provides an alternative platform for driving AHE and exhibits a nearly isotropic negative magnetoresistance.

High-pressure induced Weyl semimetal phase in 2D Tellurium
Peide D. Ye

Communications Physics, Published online: 28 November 2023; doi:10.1038/s42005-023-01460-1

Driving a quantum material from trivial to non-trivial topological phase can be engineered, for instance, by an applied external field but understanding the physics of the transition can be complex. Here, the authors report a pressure-induced topological phase transition from a semiconductor to a Weyl semimetal phase in 2D Te, and investigate the underlying dynamics using a range of magneto-transport techniques.

Energy dissipation on magic angle twisted bilayer graphene
Ernst Meyer

Communications Physics, Published online: 28 November 2023; doi:10.1038/s42005-023-01441-4

The authors present a series of correlated insulating states of twisted bilayer graphene that is detected using an atomic force microscope tip. An additional experiment demonstrates the coupling of a mechanical oscillator to a quantum device.