Yin, L.-J. et al. Imaging Friedel oscillations in rhombohedral trilayer graphene. Phys. Rev. B 107, L041404 (2023)Süle Péter2024.02.08
Yang, T. H. et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nature Electronics 1–10 (2023)Pálinkás András2024.02.01
Husain, A. A. et al. Pines’ demon observed as a 3D acoustic plasmon in Sr2RuO4. Nature 621, 66–70 (2023)Nemes-Incze Péter
2024.01.25
Zhou, Y.-Y. et al. Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene. arXiv (2023)Nemes-Incze Péter2024.01.18
Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022)Piszter Gábor2023.11.30
Guba, Z., Frank, G., Pintér, G. & Pályi, A. Weyl points in ball-and-spring mechanical systems. arXiv (2023)Márk Géza2023.11.23
H. Li et al., Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional Materials, Nano Letters 18 (12), 8011-8015, 2018.Kun Péter2023.11.09
Zhou, Z. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 621, 499–505 (2023).Kandrai Konrád2023.11.02
Chang, S., Yan, Y. & Geng, Y. Local nanostrain engineering of monolayer MoS2 using atomic force microscopy-based thermomechanical nanoindentation. Nano Lett. (2023) doi:10.1021/acs.nanolett.3c01809.Kálvin György2023.10.26
Wang, W. et al. Ultra-clean assembly of van der Waals heterostructures. arXiv (2023).Dobrik Gergő2023.10.19
Henderson, P., Ghazaryan, A., Zibrov, A. A., Young, A. F. & Serbyn, M. Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene. Phys. Rev. B 108, 125411 (2023).Balogh András2023.10.12
Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers. Nat.Comm. 14, 2989 (2023).Tapasztó Levente2023.06.15
Kang, K. et al. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. (2023) doi:10.1038/s41565-023-01376-5Szendrő Márton2023.06.08
Tong, L.-H. et al. Spectroscopic Visualization of Flat Bands in Magic-Angle Twisted Monolayer-Bilayer Graphene: Coexistence of Localization and Delocalization. Phys. Rev. Lett. 128, 126401 (2022)Süle Péter2023.06.01
Lemcoff, T. et al. Brilliant whiteness in shrimp from ultra-thin layers of birefringent nanospheres. Nat. Photonics 1–9 (2023)Piszter Gábor2023.05.25
Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–687 (2023)Pálinkás András2023.05.18
Zhou, X.-F. et al. Coexistence of Reconstructed and Unreconstructed Structures in Structural Transition Regime of Twisted Bilayer Graphene. arXiv (2022)Kun Péter2023.03.09
Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021)Dobrik Gergő2023.03.02
Houard, A. et al. Laser-guided lightning. Nat. Photonics 1–5 (2023)Kandrai Konrád2023.02.23
McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020)Dobrik Gergő2023.02.09
bubbles on bulk MoS2Tapasztó Levente2023.02.02
Martinez-Castro, J. et al. Scanning Tunneling Microscopy of an Air Sensitive Dichalcogenide Through an Encapsulating Layer. Nano Lett. 18, 6696–6702 (2018)Nemes-Incze Péter2022.01.26
Park, M., Leahey, E. & Funk, R. J. Papers and patents are becoming less disruptive over time. Nature 613, 138–144 (2023)Nemes-Incze Péter2022.01.19
Choi, S. H. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018)Piszter Gábor2022.12.01
Zhang, S. et al. Dual-Scale Stick-Slip Friction on Graphene-BN Moir’e Superlattice Structure. Phys. Rev. Lett. 128, 226101 (2022)Pálinkás András2022.11.16
Barboza, A. M., Aliaga, L. C. R., Faria, D. & Bastos, I. N. Bilayer graphene kirigami. Carbon Trends 9, 100227 (2022)Márk Géza2022.11.10
Coissard, A. et al. Absence of edge reconstruction for quantum Hall edge channels in graphene devices. arXiv [cond-mat.mes-hall] (2022)Kun Péter2022.10.27
Liu, C. et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 1–6 (2022)Kandrai Konrád2022.10.14
Wu, C. et al. Tailoring Dirac fermions by in-situ tunable high-order moire pattern in graphene-monolayer xenon heterostructure. arXiv (2022)Vancsó Péter2022.10.07
Li, S.-Y. et al. Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene. Nat. Commun. 13, 4225 (2022)Nemes-I. Péter2022.09.30
Jia, P. et al. Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. Nat. Commun. 10, 3127 (2019)

Chen, Y. et al. A versatile approach to create nanobubbles on arbitrary two‐dimensional materials for imaging exciton localization. Adv. Mater. Interfaces 2201079 (2022)
Tapasztó Levente2022.09.23
Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022)Szendrő Márton2022.09.15
Lüpke, F. et al. Quantum spin Hall edge states in twisted-bilayer 1T’-WTe2. arXiv (2020)Nemes-Incze Péter2022.06.16
Bolognesi, M. et al. Epitaxial multilayers of alkanes on two-dimensional black phosphorus as passivating and electrically insulating nanostructures. Nanoscale 11, 17252–17261 (2019).Pálinkás András2022.06.02
Wu, H. et al. Identification of abrupt intense rhombohedral stacking-transitions in dense-staircase-sublattices created by manual exfoliation of highly oriented pyrolytic graphite. Carbon Trends 5, 100128 (2021)Nemes-I. Péter2022.05.26
Graphene flagship, general assembly beszámolóMárk Géza2022.05.19
Coissard, A. et al. Imaging tunable quantum Hall broken-symmetry orders in graphene. Nature 605, 51–56 (2022)Kun Péter2022.05.13
Paz, W. S. et al. Franckeite as an Exfoliable Naturally Occurring Topological Insulator. Nano Lett. 21, 7781–7788 (2021)Kandrai Konrád2022.05.06
Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022)Dobrik Gergő2022.04.21
Wirth, K. G. et al. Experimental observation of ABCB stacked tetralayer graphene. arXiv [cond-mat.mes-hall] (2022)Nemes-Incze Péter2022.04.07
Schuler, B. et al. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci Adv 6, (2020)Tapasztó Levente2022.03.31
Hung Nguyen, V., Hoang, T. X. & Charlier, J.-C. Electronic properties of twisted multilayer graphene. arXiv (2022)Tajkov Zoli2022.03.24
Identifying atomically thin crystals with diffusively reflected light
Domaretskiy D, Ubrig N, Gutierrez Lezama I, Tran M, Morpurgo A.
2D Materials (2021), 8, 045016
Piszter Gábor2022.03.03
Brun, B. et al. Graphene Whisperitronics: Transducing Whispering Gallery Modes into Electronic Transport. Nano Lett. 22, 128–134 (2022)Pálinkás András2022.02.24
Dutreix, C. & Katsnelson, M. I. Friedel oscillations at the surfaces of rhombohedral N-layer graphene. Phys. Rev. B 93, 035413 (2016)Nemes-Incze Péter2022.02.17
Kavokine, N., Bocquet, ML. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).Márk Géza2022.02.10
Hesp, N. C. H. et al. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. Nat. Commun. 12, 1640 (2021)Kun Péter2022.02.03
Park, J. M. et al. Magic-Angle Multilayer Graphene: A Robust Family of Moiré Superconductors. arXiv [cond-mat.supr-con] (2021)Kandrai Konrád2022.01.27
Barbosa, T. C. et al. Raman spectra of twisted bilayer graphene close to the magic angle. arXiv [cond-mat.mes-hall] (2022)Dobrik Gergő2022.01.20
Wieder, B. J. et al. Topological materials discovery from crystal symmetry. Nature Reviews Materials 1–21 (2021) doi:10.1038/s41578-021-00380-2Tajkov Zoltán2021.12.09
Galeski, S. et al. Origin of the quasi-quantized Hall effect in ZrTe5. Nat. Commun. 12, 3197 (2021)Süle Péter2021.12.02
Hung Nguyen, V. et al. Electronic localization in small-angle twisted bilayer graphene. 2D Mater. 8, 035046 (2021)Vancsó Péter2021.11.25
Droguet, B.E., Liang, HL., Frka-Petesic, B. et al. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nature Materials (2021). Piszter Gábor2021.11.18
Endo, O. et al. Incommensurate crystalline phase of n -alkane monolayers on graphite (0001). J. Phys. Chem. C 115, 5720–5725 (2011)Pálinkás András2021.11.04
Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021) Nemes I. Péter2021.10.28
Mishra, S. et al. Observation of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021)Márk Géza2021.10.21
Shabani, S., Halbertal, D., Wu, W. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).Kun Péter2021.10.14
Li, Z. et al. Dry Exfoliation of Large-Area 2D Monolayer and Heterostructure Arrays. ACS Nano (2021) doi:10.1021/acsnano.1c05734Dobrik Gergő2021.09.30
Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021)Szendrő Márton2021.09.23
Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021)Tapasztó Levente2021.09.16
Zeng, M., Liu, J., Zhou, L. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0622-yPető János2020.03.13
G. Calogero, N. Papior, M. Koleini, M.H.L. Larsen, M. Brandbyge, Multi-scale approach to first-principles electron transport beyond 100 nm, Nanoscale 11 (2019) 6153–6164.Márk Géza2020.03.06
Dutreix, C. et al. Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature 574, 219–222 (2019).Nemes I. Péter2020.02.28
R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, C. R. Dean, Twistable electronics with dynamically rotatable heterostructures, Science 361, 690–693 (2018).Kun Péter2020.02.14
Palleschi, S.; et al. On the Role of Nano-Confined Water at the 2D/SiO2 Interface in Layer Number Engineering of Exfoliated MoS2 via Thermal Annealing. 2D Mater. 2020, 7 (2), 025001. https://doi.org/10.1088/2053-1583/ab5bf8.Csikai Dávid2020.02.07
Chen, W.; Sun, Z.; Gu, L.; Xu, X.; Wu, S.; Gao, C. Direct Observation of van Der Waals Stacking Dependent Interlayer Magnetism. Science 2019, 366 (November), 983–987. https://doi.org/10.1126/science.aav1937.Nemes I. Péter2020.01.31
Niels Ehlen, et al., Origin of the Flat Band in Heavily Cs-Doped Graphene, ACS Nano (2019)Szendrő Márton2020.01.24
Tsai, K. et al. Correlated Superconducting and Insulating States in Twisted Trilayer Graphene Moire of Moire Superlattices. arXiv (2019).Süle Péter2019.12.13
Kerelsky, A. et al. Moir\’e-less Correlations in ABCA Graphene. arXiv (2019). http://arxiv.org/abs/1911.00007Pálinkás András2019.12.06
Xiong, L., Forsythe, C., Jung, M. et al. Photonic crystal for graphene plasmons. Nature Communications 10, 4780 (2019).Piszter Gábor 2019.11.29
Rebekah A. Wells, et al., Roll-to-Roll Deposition of Semiconducting 2D Nanoflake Films of Transition Metal Dichalcogenides for Optoelectronic Applications, ACS Appl. Nano Mater. 2019Pető János2019.11.22
Zhang, Z. et al. Flat bands in small angle twisted bilayer WSe2. arXiv (2019). 1910.13068Nemes-Incze Péter2019.11.15
Trevor B. Arp, et al. Natural Regulation of Energy Flow in a Green Quantum  Photocell, Nano Letters, (2019), 10.1021/acs.nanolett.6b03136Márk Géza2019.10.25
Inoue, H., Gyenis, A., Wang, Z., Li, J., Oh, S. W., Jiang, S., Ni, N., Bernevig, B. A. & Yazdani, A. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).Nemes-Incze Péter2019.10.18
Zheng et al., Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography, Nature Electronics 2, 17–25 (2019).Kun Péter2019.10.11
Akius, K. & van Ruitenbeek, J. Graphene nano-origami using Scanning Tunneling Microscopy. arXiv (2018). at http://arxiv.org/abs/1812.09501Csikai Dávid2019.10.03
Marrazzo, A., Marzari, N. & Gibertini, M. Emergent dual topology in the three-dimensional Kane-Mele Pt2HgSe3. arXiv (2019). at http://arxiv.org/abs/1909.05050Vancsó Péter2019.09.27
Jesse Berezovsky, The structure of musical harmony as an ordered phase of sound: A statistical mechanics approach to music theory, Science Advances, (2019) 5, eaav8490Szendrő Márton 2019.09.20
Yuhang Jiang, Xinyuan Lai, Kenji Watanabe, Takashi Taniguchi, Kristjan Haule, Jinhai Mao & Eva Y. Andrei, Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene, Nature, 573, 91–95 (2019)Süle Péter2019.09.13
Chen, Z., Fu, F., Yu, Y., Wang, H., Shang, Y., & Zhao, Y. (2018). Cardiomyocytes-Actuated Morpho Butterfly Wings. Advanced Materials, 1805431.Piszter Gábor2019.09.06
Jia et al., Programmable graphene nanobubbles with threefold symmetric pseudo-magnetic fields, Nat. Commun. 2019Pető János2019.08.30
Uhlig, M. R., Martin-Jimenez, D. & Garcia, R. Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS2 and WSe2 in water. Nat. Commun. 10, 2606 (2019).Pálinkás András2019.07.26
Verhagen, T., et al. Superlattice in collapsed graphene wrinkles. Scientific Reports 9, 9972 (2019)Kun Péter2019.07.19
Tang, F., Ren, Y., Wang, P., Zhong, R., Schneeloch, J., Yang, S. A., Yang, K., Lee, P. A., Gu, G., Qiao, Z. & Zhang, L. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature 569, 537–541 (2019).Nemes I. Péter2019.07.12
Gröning, O., Wang, S., Yao, X., Pignedoli, C. A., Borin Barin, G., Daniels, C., Cupo, A., Meunier, V., Feng, X., Narita, A., Müllen, K., Ruffieux, P. & Fasel, R. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).Vancsó Péter2019.06.28
Alejandro Lopez-Bezanilla, Jose L. Lado, Defect-induced magnetism and Yu-Shiba-Rusinov states in twisted bilayer graphene, arXiv, 2019Szendrő Márton2019.06.14
Jiang, Y., Anđelković, M., Milovanović, S. P., Covaci, L., Lai, X., Cao, Y., Watanabe, K., Taniguchi, T., Peeters, F. M., Geim, A. K. & Andrei, E. Y. Flat Bands in Buckled Graphene Superlattices. arXiv (2019). at <http://arxiv.org/abs/1904.10147>Süle Péter2019.05.17
Photonic crystals for nano-light in moiré graphene superlattices, Sunku et al., Science 362, 1153-1156 (2018)Piszter Gábor2019.05.03
BS Jenssen et al., Lithographic band structure engineering of graphene, Nat. Nanotech. 14, 340–346. (2019)Kun Péter2019.04.26
Vincent, T. et al. Probing the nanoscale origin of strain and doping in graphene-hBN heterostructures. 2D Mater. 6, (2019).Pálinkás András2019.04.12
Wang, L., Zihlmann, S., Liu, M.-H., Makk, P., Watanabe, K., Taniguchi, T., Baumgartner, A. & Schönenberger, C. New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures. Nano Lett. (2019). doi:10.1021/acs.nanolett.8b05061Szendrő Márton2019.04.05
Nigge, P., Qu, A. C., Lantagne-Hurtubise, É., Mårsell, E., Link, S., Tom, G., Zonno, M., Michiardi, M., Schneider, M., Zhdanovich, S., Levy, G., Starke, U., Gutiérrez, C., Bonn, D., Burke, S. A., Franz, M. & Damascelli, A. Room temperature strain-induced quantum Hall effect in graphene on a wafer-scale platform. arXiv (2019). at <http://arxiv.org/abs/1902.00514>Nemes-Incze Péter2019.03.29
Anastasia V. Tyurnina, et al. Strained Bubbles in van der Waals Heterostructures as Local Emitters of Photoluminescence with Adjustable Wavelength, ACS Photonics, 2019, 6, 516–524Pető János2019.03.22
Masubuchi, S. & Machida, T. Classifying optical microscope images of exfoliated graphene flakes by data-driven machine learning. npj 2D Mater. Appl. 3, 4 (2019).Hoffmann Ákos2019.03.08
Time-evolution patterns of electrons in twisted bilayer graphene, arXiv:1901.02794v1 [cond-mat.mes-hall] 9 Jan 2019Vancsó Péter2019.02.22
Stühler, R. et al. Tomonaga-Luttinger liquid in the edge channels of a quantum spin Hall insulator. arXiv (2019).Nemes-Incze Péter2019.02.15
Anna V. Prydatko, et al, Contact angle measurement of free-standing square-millimeter single-layer graphene, Nature Communications 9, 4185 (2018)Pálinkás András2019.02.08
Kerelsky, A., McGilly, L. J., Kennes, D. M., Xian, L., Yankowitz, M., Chen, S., Watanabe, K., Taniguchi, T., Hone, J., Dean, C., Rubio, A. & Pasupathy, A. N. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).Süle Péter2019.02.01
In situ printing of liquid superlenses for subdiffraction-limited color imaging of nanobiostructures in natureBoliang Jia, Feifei Wang, Hoyin Chan, Guanglie Zhang & Wen Jung Li: Microsystems & Nanoengineering 5, 2019, 1.Piszter Gábor2019.01.25
M. D. Siao, et al. Two-dimensional electronic transport and surface electron accumulation in MoS2, Nature Communications, 9, 1442 (2018)Pető János2019.01.18.
Velický, M. et al. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano 12, 10463–10472 (2018).Hoffmann Ákos2018.12.14.
elmaradtMárk Géza2018.12.07
Filippo Pizzocchero, Lene Gammelgaard, Bjarke S. Jessen, José M. Caridad, Lei Wang, James Hone, Peter Bøggild, Timothy J. Booth, The hot pick-up technique for batch assembly of van der Waals heterostructures, Nature Communications 7, 11894 (2016)Kun Péter2018.11.30
A. Hamo et al., Electron attraction mediated by Coulomb repulsion. Nature. 535, 395–400 (2016).Nemes-Incze Péter2018.11.23
Wu, X., Fink, M., Hanke, W., Thomale, R. & Di Sante, D. Unconventional superconductivity in a doped quantum spin Hall insulator. arXiv (2018).Vancsó Péter2018.11.15
Nam, Y., Ki, D., Soler-Delgado, D. & Morpurgo, A. F. A family of finite-temperature electronic phase transitions in graphene multilayers. Science 362, 324–328 (2018).Nemes-Incze Péter2018.11.09
Louk Rademaker, Paula Mellado, Charge-transfer insulation in twisted bilayer graphene, arXiv (2018) 1805.05294Szendrő Márton2018.10.19
Jagoda Sławińska and Jorge I. Cerdá,  Spin-orbit proximity effect in graphene on metallic substrates: decoration vs intercalation with metal adatoms. arXiv:1809.08773v1 (2018)Süle Péter2018.10.12
Rashidi, M. & Wolkow, R. A. Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning. ACS Nano 12, 5185–5189 (2018).Piszter Gábor2018.10.05
Shuai Zhang, et al. Defect Structure of Localized Excitons in a WSe2 Monolayer, Phys. Rev. Lett. 119, 046101 (2017)Pető János2018.09.28
light scattering in an amorphous mediumMárk Géza2018.09.21
Shi, Y., Kahn, J., Niu, B., Fei, Z., Sun, B., Cai, X., Francisco, B. A., Wu, D., Shen, Z.-X., Xu, X., Cobden, D. H. & Cui, Y.-T. Imaging Quantum Spin Hall Edges in Monolayer WTe2. arXiv (2018). at <http://arxiv.org/abs/1807.09342>Nemes-I. Peter2018.09.14
Clark, N., Nguyen, L., Hamer, M. J., Schedin, F., Lewis, E. A., Prestat, E., Garner, A., Cao, Y., Zhu, M., Kashtiban, R., Sloan, J., Kepaptsoglou, D., Gorbachev, R. V. & Haigh, S. J. Scalable Patterning of Encapsulated Black Phosphorus. Nano Lett. (2018). doi:10.1021/acs.nanolett.8b00946Kun Péter2018.09.07
Ma, X., Liu, Q., Xu, D., Zhu, Y., Kim, S., Cui, Y., Zhong, L. & Liu, M. Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials. Nano Lett. 17, 6961–6967 (2017).Hoffmann Ákos2018.08.17
Masuyama, et al. Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system, Nature Communicationsvolume 9, Article number: 1291 (2018)Vancsó Péter2018.08.03
Walter, E., Rosdahl, T. Ö., Akhmerov, A. R. & Hassler, F. Breakdown of the law of reflection at a disordered graphene edge. arXiv (2018).Szendrő Márton2018.07.20
Chen, C. J. Microscopic view of scanning tunneling microscopy. J. Vac. Sci. Technol. A 9, 44 (1991).Gross, L. et al. High-Resolution Molecular Orbital Imaging Using a p-Wave STM Tip. Phys. Rev. Lett. 107, 086101 (2011).Nemes I. Péter2018.07.13
Biotemplated Morpho Butterfly Wings for Tunable Structurally Colored PhotocatalystsACS Appl. Mater. Interfaces 2018, 10, 4614−4621Piszter Gábor2018.07.06
Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 16, 1193–1198 (2017).Pető Jani2018.06.29
Cao, Y. et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556 (2018) 80-84.Cao, Y. et al., Unconventional superconductivity in magic-angle graphene superlattices, Nature 556 (2018) 43-50.Kun Péter2018.06.22
konferencia beszamoloMárk Géza2018.06.15.
Shin, B. G. et al. Indirect Bandgap Puddles in Monolayer MoS2 by Substrate-Induced Local Strain. Adv. Mater. 28, 9378–9384 (2016).Nemes I. Péter2018.06.01.
MoS2 edge statesVancsó Péter2018.05.25.
Naik, M. H. & Jain, M. Ultraflat bands and shear solitons in Moir\’e patterns of twisted bilayer transition metal dichalcogenides. arXiv (2018).Szendrő Márton2018.05.18.
Zhang, L. et al. Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties. ACS Nano 11, 6277–6285 (2017).Süle Péter2018.05.04.
Gallagher, P. et al. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene. Nano Lett. (2018). doi:10.1021/acs.nanolett.8b00348Piszter Gábor2018.04.27.
Hridis K. Pal, Stephen Spitz, Markus Kindermann, Emergent geometric frustration and flat band in moiré bilayer graphene, arXiv, (2018), https://arxiv.org/abs/1803.07060Szendrő Márton2018.04.20.
Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2, NATURE PHYSICS, 12 751 (2016)Vancsó Péter2018.04.06
C.-Z. Chang et al., Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science. 340, 167–170 (2013).Süle Péter2018.03.09.
Lukas Linhart, Joachim Burgdörfer, and Florian Libisch, Accurate modeling of defects in graphene transport calculations, 97, 035430 (2018)Márk Géza2018.03.02
E.J. Telford et al., Via Method for Lithography Free Contact and Preservation of 2D Materials, Nano Lett., 2018, 18 (2), pp 1416–1420.Kun Péter2018.02.23
M. M. Ugeda et al., Observation of Topologically Protected States at Crystalline Phase Boundaries in Single-layer WSe2. arXiv (2018) (available at http://arxiv.org/abs/1802.01339).Nemes I. Péter2018.02.16.
E. Khestanova, F. Guinea, L. Fumagalli, A. K. Geim, I. V. Grigorieva, Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).Pető János2018.02.09.
elmaradtSüle Péter2018.02.02.
L. Wu et al., Highly sensitive, reproducible and uniform SERS substrates with a high density of three-dimensionally distributed hotspots: gyroid-structured Au periodic metallic materials. NPG Asia Mater. 10, e462 (2018).Piszter Gábor2018.01.26.
A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, N. Marzari, Prediction of a room-temperature and switchable Kane-Mele quantum spin Hall insulator. arXiv (2017) (available at http://arxiv.org/abs/1712.03873).Nemes I. Péter2018.01.19
Suzhi Li et al., The evolving quality of frictional contact with graphene, Nature. 539, 541–545 (2016).Pálinkás András 01.12.
A. Kogar et al., Signatures of exciton condensation in a transition metal dichalcogenide. Science. 358, 1314–1317 (2017).Nemes I. Péter2017.12.15.
QPCKun Péter 2017.12.08.
Q. Chen et al., Atomically Flat Zigzag Edges in Monolayer MoS2 by Thermal Annealing. Nano Lett. 17, 5502–5507 (2017).Magda Gábor2017.11.17.
V. Fatemi, Q. D. Gibson, K. Watanabe, R. J. Cava, P. Jarillo-herrero, Observation of the Quantum Spin Hall Effect up to 100 Kelvin in a Monolayer Crystal. arXiv (2017) (available at https://arxiv.org/abs/1711.03584).Nemes I. Péter2017.11.17.
R. Krishna Kumar et al., Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys., 1–5 (2017).Szendrő Márton 2017.11.10.
B. Q. Lv et al., Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature. 546, 627–631 (2017).Süle Péter2017.10.27.
J. Annett, G. L. W. Cross, Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature. 535, 271–275 (2016).Piszter Gábor 2017.10.20.
J. Judek et al, Statistical analysis of the temperature dependence of the phonon properties in supported CVD graphene, Carbon 124 (2017) 1–8.Pálinkás András 2017.10.13.
Graphene Week 2017 beszámolóPető János, Kun Péter2017. 10. 06.
S. Li et al., The tunnelling spectra of quasi-free-standing graphene monolayer. arXiv (2017) (available at http://arxiv.org/abs/1709.00136).N. Péter2017. 09. 29.
elmaradtM. Gábor  2017. 09. 22.
Aaron D. Franklin, Nanomaterials in transistors: From high-performance to thin-film applications, Science 349, aab2750 (2015)P. János2017. 09. 15.
2D anyag szuperrácsok, kontinuum modellSz. Márton2017. 09. 08.
J. Velasco et al., Nanoscale Control of Rewriteable Doping Patterns in Pristine Graphene/Boron Nitride Heterostructures. Nano Lett. 16, 1620–1625 (2016).N. Péter2017. 08. 25.
S. Nadj-Perge et al., Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science. 346, 602–607 (2014)N. Péter2017. 08. 18.
M.K. Blees et. al., Graphene kirigami. Nature 524, 204-207 (2015)K. Péter2017. 08. 04.
K. Kim et al., Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. 114, 3364–3369 (2017).P. András2017. 07. 28.
Y. Cao et al., Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. Nano Lett. 15, 4914–4921 (2015).N. Péter2017. 07. 21.
S. Tewari, K. M. Bastiaans, M. P. Allan, J. M. van Ruitenbeek, Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips. arXiv (2017) (available at http://arxiv.org/abs/1705.08796).M. Gábor2017. 07. 14.
D. Wang et al., Thermally Induced Graphene Rotation on Hexagonal Boron Nitride. Phys. Rev. Lett. 116, 126101 (2016).K. Peter2017. 07. 07.
C. Gutiérrez et al., Imaging chiral symmetry breaking from Kekulé bond order in graphene. Nat. Phys. 12, 950–958 (2016).N. Peter2017. 06. 23.
F. Ghahari et al., An on/off Berry phase switch in circular graphene resonators. Science. 356, 845–849 (2017).N. Peter2017. 06. 16.
Kim et.al., Van der Waals Heterostructures with High Accuracy Rotational Alignment, Nano Letters 2016 16, 1989−1995.K. Peter2017. 06. 02.
M. Zhao et. al., Large-scale chemical assembly of atomically thin transistors and circuits, Nature Nanotechnology 11, 954–959 (2016)P. Janos2017. 05. 26.
J. Tetienne et al., Quantum imaging of current flow in graphene. Sci. Adv. 3, e1602429 (2017).Andras2017. 05. 19.
W. Chen, V. Madhavan, T. Jamneala, M. F. Crommie, Scanning Tunneling Microscopy Observation of an Electronic Superlattice at the Surface of Clean Gold. Phys. Rev. Lett. 80, 1469–1472 (1998).N. Peter2017. 05. 12
L. Kou et al., Robust 2D Topological Insulators in van der Waals Heterostructures. ACS Nano. 8, 10448–10454 (2014).N. Peter2017. 05. 05
Time crystalsM. Geza2017. 04. 28
C. Zhang et al., Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2. Nano Lett. 15, 6494–6500 (2015).N. Peter2017. 04. 21

en_USEnglish